

Protecting and improving the nation's health

Cardiovascular Disease Prevention Return on Investment Tool: User Guide

About Public Health England

Public Health England exists to protect and improve the nation's health and wellbeing, and reduce health inequalities. We do this through world-leading science, knowledge and intelligence, advocacy, partnerships and the delivery of specialist public health services. We are an executive agency of the Department of Health and Social Care, and a distinct delivery organisation with operational autonomy. We provide government, local government, the NHS, Parliament, industry and the public with evidence-based professional, scientific and delivery expertise and support.

Public Health England Wellington House 133-155 Waterloo Road London SE1 8UG Tel: 020 7654 8000 www.gov.uk/phe Twitter: @PHE_uk Facebook: www.facebook.com/PublicHealthEngland

Prepared by: Chloe Thomas, Hazel Squires, Michael Gillett, Edward Goka, Joanna Leaviss, Helen Buckley-Woods, Mark Clowes, Gillian Brenner, David Bagguley, Katy Cooper, Penny Breeze, Daniel Pollard & Alan Brennan. School of Health and Related Research, University of Sheffield, Regent Court, 30 Regent Street, Sheffield S1 4DA

OGL

© Crown copyright 2018

You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v3.0. To view this licence, visit OGL. Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned.

Published October 2018; Updated February 2019PHE publicationsPHE supports the UNgateway number:Sustainable Development Goals

Contents

About Public Health England	2
Background	4
Overview of the Tool	5
Using the Tool	7
Worked Example	10
Setting up the model run Receiving your results	

11 23

Background

The Cardiovascular Disease Prevention Return on Investment Tool (CVD Prevention ROI Tool) has been designed to help you to estimate the costs, savings and health benefits resulting from implementing a range of interventions or improvements in detection and/or management of CVD high risk conditions. The tool can estimate these results for your local authority (LA), clinical commissioning group (CCG), sustainability and transformation partnership (STP), or for England.

This document provides an overview of the aim and scope of the tool, together with a description of how the tool can be used and a worked example demonstrating how a user can set up a model run and interpret the results that come out of it.

Overview of the Tool

Aim of the tool

The aim of the tool is to help you to explore the impact of changes to CVD prevention strategies in people at high risk in your local area in terms of clinical events, mortality, costs and health benefits.

Scope of the Tool

The current tool includes only CVD prevention interventions aimed at people with one or more of the following risk factors for CVD:

- QRISK ≥ 10%;
- Hypertension;
- Familial hypercholesterolaemia (FH);
- Atrial fibrillation (AF);
- Diabetes (including type 1 and type 2 diabetes);
- Non-diabetic hyperglycaemia (NDH);
- Chronic kidney disease (CKD).

Primary prevention of CVD is not considered by this tool. The included interventions were all recommended by NICE by the beginning of 2018 for detection or management of one or more of the listed CVD risk factors. Interventions were included in the tool if there was sufficient evidence around the effectiveness of the intervention. Due to evidence limitations, lifestyle interventions are currently under-represented in the tool; however, the tool also includes the functionality for users to assess the impact of additional interventions that are happening in their local area if they have information about the effectiveness of the intervention.

The outcomes of the tool include clinical events, mortality, costs and health benefits. The tool includes costs and savings to the NHS and social care. It does not currently include wider societal costs. The tool includes demographic information about your local population, so that the outcomes are specific to your area. You can select the locality of interest from the full range of CCGs, STPs and local authorities in England, or for the whole of England.

Further information about the design of the tool can be found in the accompanying project report and the full technical appendix.

Exemplar analyses

A set of exemplar analyses based on national data can be found in the results section of the accompanying final report. This shows a set of analyses based on England, indicating the relative benefits of optimising detection, management or usage of each of the interventions to help you design your own scenarios.

Underlying Model

The underlying model is the School for Public Health Research (SPHR) diabetes and CVD prevention model, developed by the School of Health and Related Research and the University of Sheffield. Full details can be found in the accompanying technical document. This model follows individuals who are programmed to have similar characteristics and risk factors for CVD as those in the English population. Metabolic trajectories for body mass index, cholesterol, systolic blood pressure and glycaemia are predicted for each individual. Baseline characteristics and metabolic risk factors determine the individuals' probability of CVD events, diabetes microvascular complications, cancer, osteoarthritis, depression and dementia. The model also predicts death from CVD, cancer and other causes. The outcomes of the tool will reflect any impact of the interventions on these related conditions as well as CVD. Long term costs and quality-adjusted life years are collected for each individual.

Using the Tool

Key Inputs

There are two types of questions that can be answered by the tool:

1 What happens when I improve detection or management of key CVD risk factors?

This allows you to consider the impact of changing the proportion of people detected and/or well-managed for one or more of the included CVD risk factors:

- QRISK ≥ 10%;
- Hypertension;
- Familial hypercholesterolaemia (FH);
- Atrial fibrillation (AF);
- Diabetes (including type 1 and type 2 diabetes);
- Non-diabetic hyperglycaemia (NDH);
- Chronic kidney disease (CKD).
- 2 What happens when I improve usage of the key interventions for people at risk of CVD?

This allows you to focus in on the impact of changing the proportion of people with any CVD risk factor who are undergoing specific detection and management interventions. Usage of an intervention incorporates the proportion offered the intervention (of those eligible), uptake and retention of the intervention. Improvements in usage of the intervention might occur through offering more of the eligible population the intervention, increasing uptake and/ or reducing discontinuation of the intervention. Interventions include:

- NHS health checks;
- Annual review for people with one or more high risk condition;
- Cascade testing for FH;
- Lipid modification therapy;
- Anti-hypertensive therapy;
- Anticoagulant therapy;
- Blood glucose lowering medication for type 2 diabetes (e.g. metformin);
- NHS diabetes prevention programme;

- Structured diabetes education;
- Weight management programmes;
- Smoking cessation programmes;
- Nutritional advice for CKD;
- Insulin pump;
- Pharmacist new medicines review;
- Blood pressure self-monitoring;
- User defined intervention.

Depending upon the question that you select to answer, the tool will show an estimate of the current proportion of individuals detected and managed for each condition, or the current proportion using each intervention, based on local data sources where possible, but national data sources where not. You can modify these proportions if you have better local estimates. You can then enter the target proportion of individuals detected/ managed/ using an intervention to create your future scenario. For both questions, you can decide whether you want to phase in the changes over up to three years.

There is also the option for you to input information about an intervention which is not currently included in the tool but that you may wish to evaluate. To do this, you must have information about the effectiveness of the intervention (in terms of CVD relative risk), the target high risk group, the cost of the intervention, the duration of intervention effect and the current and target proportions of individuals undergoing the intervention.

You will also be asked to input your local area of interest, a name for your model run, and your email address to enable you to receive results.

Throughout the tool there are information boxes that you can click on to give you additional information and guide you further.

Key Outputs

Following submission of the tool inputs, the underlying model will take some time to run (estimated to be about one hour per scenario tested but this depends on how many others are using the tool at the same time). You will receive an email when the results are ready containing a link to a user output webpage with your results.

The user output interface includes a range of interactive options to enable you to choose the type of outputs that are of most interest to you. Outputs include a series of tables and graphs based around the incremental (additional) values for each chosen scenario compared with current care (e.g. additional clinical events avoided, additional costs/savings).

You will be able to:

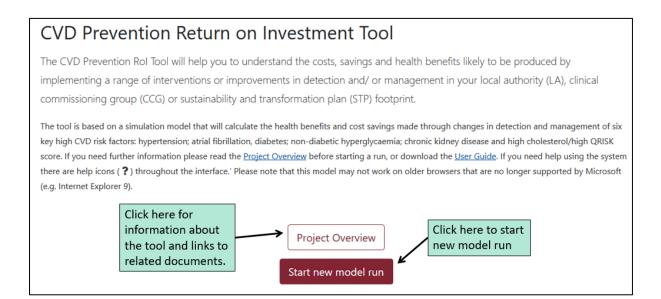
- 1 See the inputs that you selected for each scenario, as well as the numbers and proportions of people estimated to have each of the high risk conditions (including undiagnosed cases) currently in your local area.
- 2 See particular results by selecting particular population subgroups (if desired), a time horizon and a set of output variables of interest. You can go back and change your customised reporting choices as many times as desired.
- 3 Download a PDF of all results.
- 4 Download an Excel table of detailed results for the total population to enable further data analysis if required.

Through the email link, you will be able to return as often as you wish to your user output interface, so will be able to retrieve results or look at new outputs for the same analysis at a later date without having to rerun the model.

Worked Example

This worked example will guide you through setting up a model run and interpreting the outputs, using screenshots from the tool. Additional comments are shown in turquoise boxes.

Question: What would the 10-year cost-savings and health benefits be if detection and management of hypertension in England could be improved to reach PHE targets within the next two years?


Setting up the model run

Step 1

Open the tool at https://cvd-prevention.shef.ac.uk/ and click on the Start new model run button.

Clicking on the Project Overview button allows you to see information about how to use the tool and includes links to documents associated with the tool including:

- Database of interventions and conditions, which contains detailed information about the parameters used relating to each of the risk factors and interventions in the tool, and their data sources. It is well worth looking at prior to setting up your first model run. This important resource is also linked to regularly throughout the tool.
- Project report, which contains a project summary and a set of exemplar analyses that compare the benefits of optimising detection and management of each risk factor, or usage of each intervention in turn.
- Technical report, which contains full details of the reviews carried out as part of the project and details of the model underlying the tool.

Step 2

The first input sheet has four questions, all of which must be answered before moving onto the next sheet. You must give your model run a name (ideally this will reflect the question you wish to ask, so that you can easily find your results later if you are using the tool more than once), enter your email address (necessary for receiving results), choose your locality of interest (in this case England) and select which of the two key questions you wish to answer from those available in the tool:

- 1 What happens when I improve detection or management of key CVD risk factors?
- 2 What happens when I improve usage of the key interventions for people at risk of CVD?

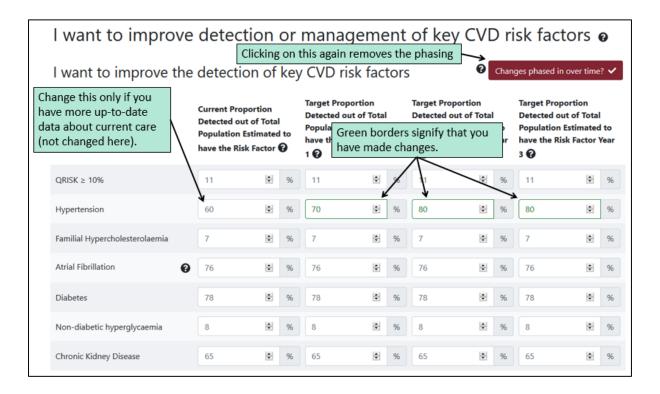
In this example you are interested in seeing the benefits of improving detection and management, so choose the first of the two questions. If you were instead interested in looking at the effect of improving usage of specific interventions then you would choose the second question. An example of this is shown in the Alternative Step 3 section on page 18.

When all four questions have been answered, click on the next button to move to the second and final input page. Note that you will be able to go back to this page from the final page if you want to make changes later.

Details	Give your model run a nar	ne
What do you want to call this model run?	which helps you remember target changes you have n	
Hyp Detection Management 2yr target		
e.g. 'Increased Diabetes Detection'		
What email address shall we send results to?	Your email address is requered for you to receive results.	ired
name@email.com	Tor you to receive results.	
What locality would you like to base this run on?	Select England as the local localities include CCGs, ST	
(type into box to narrow selection)		
What type of question you would like to answer		This gives more information about the two types of question that the tool can answer.
What happens when I improve detection or man	agement of key CVD risk factors?	X •
N		
To answer your question you	are interested in	Click here when you have finished

Step 3

The final input page contains quite a lot of detail. There are two very similar sections, the first focussing on detection (of individuals with high risk conditions who are currently undetected) and the second focussing on management (treatment and CVD prevention in individuals who are currently detected), for each of the high risk conditions. The first screenshot shows an overview of the whole page.


I want to improve risk factors e < want to improve the factors	Furthe detectio	er info	availa key CV	ble here 'D risk @	hanges phased in	over time? ×	Click on this box, as you want a phased increase to target.
Total	ent Proportion I Population Es Factor 🚱			Target Proportion E Population Estimate Factor 😧		Cuggostod	
QRISK ≥ 10%	11	٥	%	11	• %		
Hypertension	60	۲	%	60	* %	80% 🗲	National ambitions
Familial Hypercholesterolaemi	7	٠	%	7	* %		for hypertension (and AF) diagnosis
Atrial Fibrillation	76	٠	%	76	* %	90%	are shown here
Diabetes	78	۵	%	78	* %		
Non-diabetic hyperglycaemia	8	۵	%	8	* %		
Chronic Kidney Disease	65	٥	%	65	۰ %		
I want to improve ma	nagemer	nt of I	(AV (V	1) rick factors			
	ent Proportion	Well-Ma		Target Proportion V Detected Population	Vell-Managed out	t of Suggested Target*	
	-	Well-Ma		Target Proportion V	Vell-Managed out		
of De	etected Popula	Well-Ma	inaged out	Target Proportion V Detected Population	Vell-Managed our		National ambitions
of De QRISK ≥ 10%	21	Well-Ma tion 🕜	maged out	Target Proportion V Detected Population 21	Vell-Managed our	Target*	for hypertension (and AF)
of De QRISK ≥ 10% Hypertension	21 57	Well-Ma tion 🚱	%	Target Proportion V Detected Population 21 57	Vell-Managed out n 🕐 👻 %	Target*	for hypertension (and AF) management are
of De QRISK ≥ 10% Hypertension Familial Hypercholesterolaemia	21 57 86	Well-Ma ntion 😧	%	Target Proportion V Detected Population 21 57 86	Vell-Managed out n	Target*	for hypertension (and AF)
of De QRISK ≥ 10% Hypertension Familial Hypercholesterolaemia Atrial Fibrillation	21 57 86 76	Well-Ma tion 😧	% % %	Target Proportion V Detected Population	Vell-Managed out n	Target*	for hypertension (and AF) management are
of De QRISK ≥ 10% Hypertension Familial Hypercholesterolaemia Atrial Fibrillation	21 57 86 76 40	Well-Ma tion @	% % %	Target Proportion V Detected Population 21 57 86 76 40	Vell-Managed out	Target*	for hypertension (and AF) management are
of De QRISK ≥ 10% Hypertension Familial Hypercholesterolaemia Atrial Fibrillation Diabetes Non-diabetic hyperglycaemia	21 57 86 76 40 35	Well-Ma tion	% % %	Target Proportion V Detected Population 21 57 86 76 40 35	Vell-Managed out n	Target*	for hypertension (and AF) management are
of De QRISK ≥ 10%	Etected Popular 21 57 86 76 40 35 55	Well-Ma tion	% % % %	Target Proportion V Detected Population 21 57 86 76 40 35	Vell-Managed out n	Target*	for hypertension (and AF) management are

For each high risk condition, information is given about the current proportion detected and well managed in your local area. The target proportion detected and well managed is set at default to the same as the current proportion (i.e. no change). Where suggested targets are available, these have been displayed at the right.

Further information about each of the sets of inputs is available by clicking on the information bubbles. The screenshot below shows an example of the information seen in the information bubble for the 'Current proportion Detected out of Total Population Estimated to have the Risk Factor' heading. This includes another link to the database of interventions and conditions, which contains detailed information about the data sources used to determine current care, amongst other information.

I want to improve risk factors e I want to improve factors	nated to have where possib of these estin twentions and their own inp ent Proportion Population 1	the risk fact le, and nation nates can b conditions uts if they v	tor. The estii onal data ot e found in t The user can vish.	at of the total population mates are based on loo herwise. The source of he <u>database of</u> n overwrite these value Close Target Proportion I Population Estimat	f k s ges p Detected		sources in the tool in the database of interventions and conditions
Risk	Factor 😧			Factor 🕜			langer
QRISK ≥ 10%	11	۲	%	11	۲	%	
Hypertension	60	۲	%	60	¢	%	80%
Familial Hypercholesterolaemia	7	۲	%	7	٤	%	
Atrial Fibrillation	76	۲	%	76	۲	%	90%
Diabetes	78	۲	%	78	۲	%	
Non-diabetic hyperglycaemia	8	۲	%	8	۲	%	
Chronic Kidney Disease	65	Ð	%	65	۲	%	

When you have finished looking at the page, you will be ready to start changing some of the inputs. You want to phase in changes over two years, so before altering any of the other input boxes, you should click on the Changes phased in over time box at the top right of the page. The screenshot below shows how this alters the input page (top part only shown). The new page allows you to phase in targets over up to three years. Note that the model implements the changes from the beginning of each year, so year one targets will produce outcomes from year one onwards.

Firstly, you want to check that you are happy with the default values given for current care. If you have more up-to-date information about the current proportion detected with hypertension, you can alter the value in the relevant current care box, either by using the arrows, or typing directly into the box. We are assuming in this example that you do not have any more recent information about this value, so you will not change the value in this box.

Next, you want to phase in changes over two years to reach the PHE target of 80%. This means that you should enter 80 into the year 2 target box. You should also enter 80 into the year 3 target box as we wish the target to be achieved beyond year 2. You should also think about what assumptions you want to make in the first year. If your phase-in will be gradual, it makes sense to enter a value that is halfway between current and target care (i.e. 70%).

The model assumes that targets continue indefinitely into the future (i.e. in year 4, the same target will be achieved as in year 3). If you want to increase the target transiently over 1 or 2 years before returning to normal, this can also be implemented by setting the year 3 (and year 2 if desired) target values back to the same as the current care values. Note that for detection, in reality it may take several years to return to the current care levels of detection, as people cannot be 'undetected' with a condition once detected.

The model will allow you to look at the benefits of improving detection and management for multiple risk factors at once. However, in this example we

are only interested in hypertension, so leave the other detection boxes unchanged.

In the model, improvements in detection for each specific risk factor are assumed to come from an increase in unspecified opportunistic detection methods (rather than specific methods like NHS Health Check and Annual Review that would also detect other risk factors). It is unknown what the costs of these detection mechanisms would be, so detection costs are not included in the model, but the cost of formal diagnosis for people detected opportunistically with risk factor (e.g. including ambulatory blood pressure monitoring for hypertension diagnosis) is included in the intervention costs in the tool.

The process is identical for the management part of the page (screenshot below). Note that you can choose any combination of target scenarios that improve detection only, management only, or management and detection. It is advised not to set any of the target or current care boxes for detection or management to zero, as this can cause problems in running the model.

e this only if you have up-to-date data about nt care (not changed here).		oportion Well- out of Detected	Managed	oportion Well l out of Detect on Year 1 🚱	ed Manage	roportion Well- d out of Detected ion Year 2 🚱	d Manageo	roportion Well- d out of Detected on Year 3 🚱	Green border
QRISK ≥ 10%	21	۰ %	21	¢	6 21	۶ %	21	. %	signify that you have
Hypertension	57	۶ %	70	•	6 80	÷ *	80	₽ %	made changes.
Familial Hypercholesterolaemia	86	۶ %	86	<u>ې</u>	6 86	۶ %	86	* %	endingeon
Atrial Fibrillation	76	۶	76	•	6 76	♥ %	76	* %	
Diabetes	40	• %	40	•	6 40	\$	40	* %	
Non-diabetic hyperglycaemia	35	۰ %	35	و ال	6 35	۶	35		
Chronic Kidney Disease	55	♥ %	55	و الأ	6 55	۶	55		
*PHE CVD Ambitions by 2023 Settings @ Cost discount rate		Default PHE liscount rat		GALYS discur	nt rate				Press when re
3.5	¥	B	%	1.5				۰ %	to run model

In the model, improvements in management for each specific risk factor are assumed to come from proportionally increasing usage of all NICE recommended management interventions for that risk factor that are included in the model. The list of which interventions are recommended for each high risk factor can be found in the database of interventions and conditions. The final inputs relate to the discount rates used in the model. Costs and QALYs are often discounted to account for the fact that people place less weight on what happens in the uncertain future than they do on the present. If a discount rate of 0% is chosen then no discounting will be applied. The higher the discount rate the more future costs and QALYs will be downweighted. The default values reflect those recommended by HM Treasury's Green Book (and used by PHE), so for this example we will assume that they should not be changed.

When you are satisfied that you have made the changes that you want to make, you can press the run model button. If you want to go back and make changes to the previous page, you can use the previous button to do this (although note that any information you have entered on the final page will not be saved).

After clicking on the run model button, you will see the model submission screen shown below, indicating that your model is now running. Whilst model runs each complete within an hour, your run may be put in a queue if other model runs are currently in process. You can now close your browser window.

CVD Tool

Your model has been submitted

Your model will now be run on our servers, once results are available you will receive an email. Model runs normally complete within 12 hours.

©2018 epiGenesys

Alternative Step 3

If you were interested in investigating the benefits of improving usage of specific interventions, then you would have instead chosen the 'What happens when I improve usage of the key interventions for people at risk of CVD?' question in step 2. In this case, you would instead see a final input page that looks like the below screenshot.

people at risk of CVD	Further	info av	ailable here	7 ^{Change}	es phased i		
interventions in the tool	Current Pr	oportion	ligible Undergoing	Target Propor	n Eligibl	Underg	Three year phas
	Each Interv			Each Intervent	-		available for all interventions a
NHS Health Checks	44	٢	%	44	٥	%	from user-defin intervention
Annual Review	44	۵	%	44	٠	%	
Detection of FH and Cascade Testing	24	٤	%	24	۲	%	
Lipid Modification Therapy	42	٥	%	42	٥	%	
Anti-hypertensive Therapy	57	٤	%	57	٢	%	
Anticoagulant Therapy	76	٤	%	76	۲	%	
Blood Glucose Lowering Medication	71	٥	%	71	٥	%	
NHS Diabetes Prevention Programme	35	۲	%	35	٥	%	
Structured Diabetes Education	8	٢	%	8	٢	%	
Weight Management Programmes	13	٢	%	13	۲	%	
Smoking Cessation Programmes	3	٢	%	3	۵	%	
Nutritional Advice for CKD	20	¢	%	20	*	%	
Insulin Pump	15	٤	%	15	۲	%	
Pharmacist New Medicine Review	65	٢	%	65	٥	%	
Blood Pressure Self Monitoring	31	٢	%	31	٠	%	
User Defined Interver CVD Risk Factor None	ntion 🛛	A × •	dd details abou CVD Relative Risk	it your own	interver	ition ir	n this section €
Current Eligible Proportion Undergoin	g Intervention	0	Target Eligible Prop	ortion Undergoin	ig Intervent	ion	0
0	0	%	0			٥	%
Upfront Intervention Cost Per Person			Subsequent Annual	Intervention Cos	t Per Perso	n	
£ 0		٠	£ 0				
Duration of effect (years)							0
							۲
0							
							Click here
0			QALYs discount rate	2			Click here when ready to run model

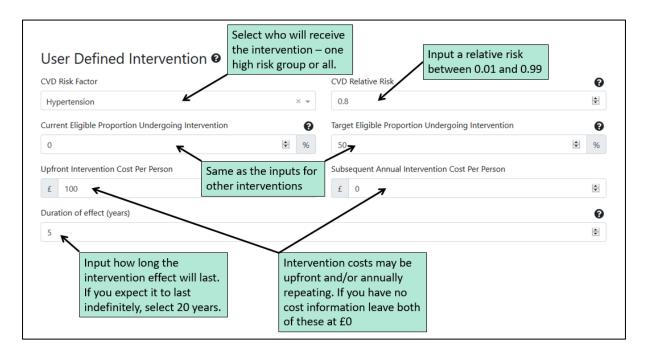
In the first part of the page, instead of a list of high CVD risk factors, you will see a list of interventions, each aimed at detecting and managing CVD risk factors. This part of the input page works in a very similar way to the detection and management input page. For each intervention, information is given about the current proportion undergoing the intervention of those eligible. The target proportion undergoing each intervention is set at default to the same as the current proportion (i.e. no change).

Further information about each of the sets of inputs is available by clicking on the information bubbles. Some of these information bubbles include another link to the database of interventions and conditions, which contains detailed information about the data sources used to determine current usage of interventions. The database of interventions and conditions also contains other information relating to each intervention, including effectiveness data, cost-effectiveness data, intervention costs, assumed duration of effect and eligibility criteria.

The top part of the page is shown in the screenshot below, giving an example of input changes made. As in the detection and management page, data about current proportion undergoing each intervention can be changed if you have better or more up-to-date information about current intervention usage. You can then change the target usage for one or more interventions.

CVD Tool					
I want to change the CV	/D relate	ed interv	ventions in t	the pop	oulation o
l want to improve usage of k at risk of CVD	ey interve	entions for	people	Ch	anges phased in over time? X
Change this only if you have more up-to-date data about current care	Current Propo	ortion Eligible Uno		et Proportion vention 🕜	Eligible Undergoing Each
NHS Health Checks	44	۶ %		44	♦ %
Annual Review	44	۶ %		44	∲ %
Detection of FH and Cascade Testing	24	€ %	Green	24	* %
Lipid Modification Therapy	50	•	borders signify that	80	* %
Anti-hypertensive Therapy	57	÷ %	you have	80	* %
Anticoagulant Therapy	76	€ %	made changes.	80	* %
Blood Glucose Lowering Medication	71	€ %	changest	71	* %
NHS Diabetes Prevention Programme	35	€ %		35	* %
Structured Diabetes Education	8	€ %		8	€ %
Weight Management Programmes	13	€ %		13	* %

Each intervention may impact on one or more of the high CVD risk factors included in the tool, depending upon eligibility criteria. Interactions between interventions in the model mean that altering the usage of one intervention will have knock-on effects on usage of the other interventions (the population will be healthier due to intervention, so usage of some interventions may be reduced, but fewer people will die so usage of other interventions may be increased). It is possible with this part of the tool (but not possible in the detection and management part of the tool) to entirely remove interactions with any interventions you are not interested in (e.g. if they are not offered in your local area) by setting current and target usage for that intervention to 0% (see screenshot below for an example).


	Current Pro Each Interv		going Target Propor Each Intervent	tion Eligible Undergoing tion 😯	
NHS Health Checks	44	€ %	44	€ %	
Annual Review	44	☞ %	44	★ %	
Detection of FH and Cascade Testing	24	* %	24	\$ %	
Lipid Modification Therapy	50	∲ %	80	÷ %	Target
Anti-hypertensive Therapy	57	€ %	80	*	changes
Anticoagulant Therapy 🕜	76	٠	80	€ %	made
Blood Glucose Lowering Medication	71	٠	71	\$ %	
NHS Diabetes Prevention Programme	35	◆ %	35	\$ %	
Structured Diabetes Education	8	€ %	8	€ %	Set to 0% for both
Weight Management Programmes	13	* %	13	\$ %	current
Smoking Cessation Programmes	3	€ %	3	÷ «	and target
Nutritional Advice for CKD	0	€ %	0		available
Insulin Pump	15	* %	15	€ %	in your local area
Pharmacist New Medicine Review	65	€ %	65	•	locararea
Blood Pressure Self Monitoring	0	÷ %	0	€ %	

Setting up a User-Defined Intervention

The bottom part of the input page allows you to specify your own management intervention if you wish, and if you have some information about the costs and effectiveness of this intervention. This might include a new lifestyle intervention, a new pharmacological intervention, or you might be interested in seeing what benefits could accrue if you could increase adherence to one of the existing tool interventions. Note that you can set up a user-defined intervention at the same time as you make changes to the other interventions if you wish.

For example, let's say that in your local area you are planning to roll-out a lifestyle intervention aimed specifically at people with hypertension, which helps them reduce salt, fat, caffeine and alcohol in their diet and promotes physical activity. This will cost £100 to deliver over six months, and you aim to give it to 50% of your hypertensive population. From published studies of similar interventions you think that this will help reduce CVD by 20% in this population for five years.

The screenshot below shows what inputs you should enter to evaluate the benefits of this intervention. You must fill in at least the CVD Risk Factor, CVD Relative Risk, Duration of Effect and Target Proportion boxes for this intervention to be included in your model run.

CVD Risk Factor defines your target population; you can choose between any of the risk factors in the tool, or choose to intervene in all high risk individuals. Intervention effectiveness must be inputted as a relative risk for CVD. So for example, a 20% risk reduction is equivalent to a relative risk of 0.8. Your intervention has an upfront cost of £100 per person, but no subsequent annual intervention cost, so this can be left as £0. Note that if your intervention had a fixed annual cost (e.g. £20), you should enter £20 in both the upfront and subsequent cost boxes. Duration of effect needs to be specified in a whole number of years, with 20 years being the maximum time horizon of the model. Finally, the current and target proportions undergoing the intervention should be inputted in the same way as for the other interventions in the tool. User-defined interventions can either be run alone, or tested in combination with target changes in usage of any of the other interventions in the tool.

There are some restrictions on the flexibility of the user-defined intervention which may mean that the tool cannot model your intervention as well as it models the other interventions in the tool. Firstly, it is assumed that individuals are only eligible for the intervention once, even once the duration of effect is passed. This means that it can be used to model one-off lifestyle interventions (as described above), or continuous pharmacological interventions, but cannot model interventions that may be repeated regularly at intervals of two or more years. Secondly, phasing is not enabled in the user-defined intervention.

The final section of the interventions input sheet is identical to the detection and management input sheet, and will allow you to change the discount rate and set the model running.

Receiving your results

Filtering Results

Your results will be received in the form of an email including a link. This link is permanent so you can return to it as often as you wish. Clicking on the link will take you to your results page. An example of how the top of this page will look is shown in the screenshot below.

Hyp Detection	on Management	2yr target Name you gave your model run
🗴 Export raw data as xlsx	🖞 Download report as pdf 🛛 🗲 Down	nloadable results
Form inputs		Open this tab to remind you of inputs made \longrightarrow V
Output filters		^
Users may also view results fo		they wish to be displayed. All results are displayed for the total population. Plus subgroups analyses by:
 Clinical Events Mortality/Life Years Costs Health Benefits 	Select one or more outputs you are interested in here	 High CVD Risk Conditions Socioeconomic status (IMD quintiles) Ethnicity (White, South Asian, Other) Age Band (<40, 40-74, >=74) Select to see subgroup results by chosen output(s)
Time Horizon 1 Year 3 Years Please click on the year for th	5 Years 10 Y the desired time horizon, or drag the current	ears 15 Years Click to choose your preferred time horizon: Years

The name that you gave your model run will be at the top of the page. Underneath this, two buttons allow you to download and save your results. The PDF download includes all the results graphs, tables and text presented in your results link. The Excel download contains the raw data for the total population results (but not the subgroup results), for your own data analysis. If you open the Form inputs tab, you will be reminded of the inputs that you selected for this model run.

A large amount of output data is available from the tool, so the Output filters tab has been created to enable you to manage which outputs you see, to prevent results from becoming overwhelming. If nothing in this tab is selected, then you will only see some descriptive text and two tables: Table 1 showing the estimated total prevalence of high CVD risk factors in your population (including diagnosed and undiagnosed), and Table 2 giving you some key summary results (see example in the next section). You can select one or more of four different types of outputs:

- Clinical events (CVD events including heart attacks, angina, stroke, transient ischaemic attack (TIA) and congestive heart failure, plus new diabetes diagnoses and end stage renal disease).
- Mortality/Life Years (includes premature mortality at age < 75, and life years).
- Costs (includes costs of each intervention in the model, plus cost-savings to the NHS [split into primary and secondary care in one analysis, and by disease area in a second analysis] and to social care, plus the net total).
- Health Benefits (includes Quality Adjusted Life Years (QALYs) and Net Monetary Benefit [NMB], which monetises the health gains assuming a value of £60,000 per QALY).

By default, all results will be shown for the total population. However, if you wish to compare results across subgroups, you can also select one or more of the subgroup boxes. Note that you must choose at least one output in addition to selecting a subgroup to see any subgroup results. A graph will be shown for each chosen subgroup, for each of your selected outputs (up to 16 graphs in total). Subgroups include high CVD risk conditions, age groups, ethnic groups and quintiles of socioeconomic deprivation.

The final selection is to decide your preferred time horizon. Graphs will be shown spanning your entire time horizon, whilst in tables, a selection of data from key years across your chosen time horizon will be shown.

You can go back and change your selection as many times as you wish.

Interpreting Results: Key Results

This section helps explain some of the graphs and tables found in the tool reports, with reference to the worked example.

Key model results are found in Table 2 (shown below), which you will be able to see without selecting any additional output filters. This includes the total number of CVD events prevented (including heart attacks, strokes, angina, transient ischaemic attack and congestive heart failure), the total costs of intervention (this includes costs of improving detection or management), the total cost savings to the NHS and social care, the net overall cost or savings of your target scenario, the total life years gained and the total qualityadjusted life years (QALYs) gained.

able 2: Key Model Results					A selection of
	Year 1	Year 3	Year 5	Year 10	years data is presented
CVD Events	-5,614	-32,121	-61,215	-138,126	spanning
Total Intervention Costs	451,811,718	1,689,032,070	2,615,510,991	4,577,807,850	your chosen time horizon
Total Cost Savings	-40,864,078	-335,023,479	-781,820,951	-2,346,571,214	
Overall Cost or Savings, Net of Cost of Interventions	410,947,640	1,354,008,592	1,833,690,040	2,231,236,636	Overall (net)
Life Years Gained	0	1,832	11,124	76,959	totals are the sum of
Quality-adjusted life years (QALYs) gained 'Total Intervention Costs' includes the costs of all interventions whos condition, or usage of an intervention. 'Total Cost Savings' includes s				6	intervention costs and total cost savings above
Condition, of usage of an intervention. Total Cost savings includes s conditions. Overall (Net) Cost or Savings is calculated as 'Total Cost s fhis tool takes account of multiple risk factors and associated chang resulting from increased number of people taking anti-hypertensive: newly prescribed medication). The tool also takes account of the pol reatment costs and benefits), distinguishing this tool from other ap strategies modelled may bring further treatment costs; however, the demonstrate potential improvements to population health. For more	Savings' plus 'Total In es in service provisio s, or increasing provi ential for multiple di proaches that just co consideration of enl	n (e.g. increasing pro sion of new medicine agnoses from one pro nsider individual risk hanced diagnosis and	vision of blood pressu reviews as a consequ ogramme (and their so factors individually. Th treatment of conditio	re self-monitoring ence of people being ubsequent effect on nese 'indirect' effects of ons is designed to port.	ormative text low each table
Please select some filter	rs above to show	more tables and g	graphs	an	d graph

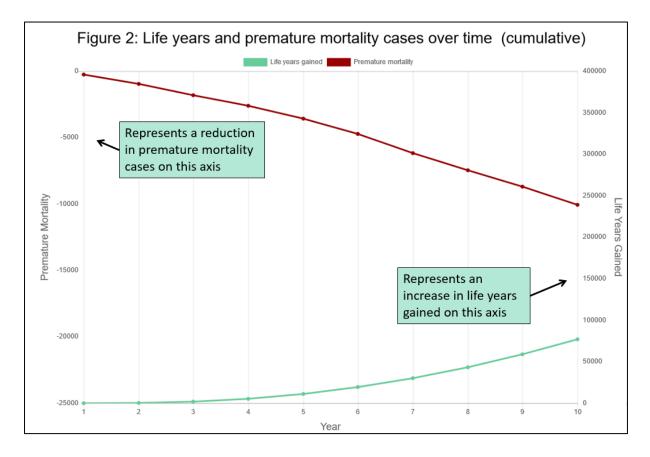
All results are shown as cumulative over time (i.e. for year 2, the results for year 1 and year 2 are combined), and incremental (i.e. the difference between your target scenario and unchanged current care).

Cost savings are always represented as negative, with costs represented as positive. Adding together total intervention costs and total cost savings produces the net total of overall costs/savings, which determines whether or not your scenario is cost-saving overall or whether it will cost money.

Interpreting Results: Clinical Outputs

The screenshot below shows an example of Table 3, which presents clinical outputs. Actual results will vary between model runs; however, in general you will probably find that CVD events will be reduced (negative values) and that this reduction will increase cumulatively over time.

Table 3: Clinical Events (cumulative	e)			
	Year 1	Year 3	Year 5	Year 10
Heart Attacks	-1,137	-6,132	-12,917	-30,729
Unstable Angina	-714	-2,770	-5,176	-10,686
Stable Angina	-1,291	-7,838	-14,535	-30,675
Stroke	-1,100	-7,482	-14,392	-38,451
TIA	-342	-2,148	-3,919	-8,197
Congestive Heart Failure	-1,030	-5,752	-10,276	-19,387
Total CVD	-5,614	-32,121	-61,215	-138,126
New diabetes diagnoses	0	-6,241	-3,756	2,329
End-Stage Renal Disease	0	-6	-20	127
		Sometimes you increases in clir		


Sometimes small increases in events followed later or earlier by reductions may be seen. These are likely to be due to randomness and imply that the results for this clinical event are not likely to be statistically significant. Sometimes large increases in end stage renal disease and/or diabetes are seen at later time horizons (as shown here) because the reduction in CVD (and hence CVD death) is resulting in people living longer and developing more end stage renal disease and diabetes than they would have done otherwise (known as competing risks).

An accompanying figure (Figure 1 from the results page), displays CVD events and is fairly straightforward to interpret so is not shown here.

Interpreting Results: Mortality/Life Years

Results are given for premature mortality and life years in Table 4 from the results page (not shown), with premature mortality being specified as mortality under age 75. In general, most scenarios will produce an increase in life years and a reduction in premature mortality. A small increase in premature mortality may be seen in some scenarios, in particular those that increase usage of anticoagulants. Although highly effective, anticoagulants are also associated with a relatively small risk of major bleeding, which may be fatal. The magnitude of this effect is subject to considerable uncertainty, and the modelled effects on premature mortality when running scenarios that increase anticoagulant usage in this tool may not be statistically significant. Anticoagulants are recommended by NICE for their overall positive impacts on quality and length of life, and generally, any small increases in premature mortality are vastly outweighed by increases in life years.

Figure 2 from the results page (see example below) plots premature mortality and life years on the same graph. It is important to note that these have separate axes and therefore that there is no significance relating to the two plotted lines crossing, as they may do in some scenarios.

Interpreting Results: Costs

Costs are split in two different ways to produce a range of tables and graphs containing different information. Table 5 (screenshots below) shows intervention costs split by type of intervention, and savings split by primary care, secondary care and social care. Positive values represent costs and negative values represent savings.

	Cost of additional hypertension diagnosis	Year 1	Year 3	Year 5	Year 10	Indirect costs and	
INTERVENTION COST	S:					savings accrue from year 2 onwards for	
NHS Health Check Cos	iz V	0	-6,903,182 ←	-16,921,436	-42,676,543	all interventions.	
Annual Review Costs	\backslash	0	38,773,759	87,745,006	193,200,030		
Cost of diagnosing all o from FH	of the high risk conditions apart	74,765,376	155,106,157	159,690,450	169,787,753		
Familial Hypercholester	olaemia Testing costs	0	346,919	246,223	-331,243		
Cost of statin treatmen	t	0	15,811	187,997	1,230,910	Costs of additional hypertension	
Cost of antihypertensiv	e treatment	73,545,213 ←	361,965,208	639,688,978	1,245,677,626	management	
Cost of anticoagulant t	reatment	3,549,858 ←	17,942,706	28,818,461	45,987,505	More people eligible fo	
Cost of antidiabetic tre	atment (type 2 diabetes)	0	-612,484	-1,701,679	-9,065,084	anticoagulants due to hypertension diagnosis	
Cost of NHS Diabetes F	Prevention Programme (DPP)	0	166,609	653,812	2,342,434	More people eligible fo	
Cost of diabetes educa	tion	0	-82,028	-187,831	-128,220	lifestyle interventions due to better diagnos of hypertension	
Cost of weight manage	ment programmes	117,941,990	271,957,364	263,409,997	230,109,254		
cost of smoking cessati	on programmes	70,223,355	318,310,901	535,437,511	990,893,182		
ost of nutritional advid	e for CKD	0	37,262	19,007	-113,467	More people eligible	
ost of medicine use re	view	37,793,448	95,568,173	114,114,704	154,235,290	for medicine use review and BPSM	
ost of blood pressure	self-monitoring	73,992,478	436,471,991	804,262,108	1,596,424,169	due to increased antihypertensive	
ost of insulin pump		0	-33,095	47,682	234,255	usage	
ost of user-defined int	ervention	0	0	0	0 <	Not used here	
otal Intervention Costs		451,811,718	1,689,032,070	2,615,510,991	4,577,807,850	Total of all	
AVINGS:	Cost savings shown as negative values.					above rows	
avings in Primary Care		-5,937,127	-66,915,426	-158,042,668	-412,702,039		
avings in Secondary C	are	-26,845,355	-190,248,255	-421,213,189	-1,176,436,873	3	
otal Cost Savings (NHS)	-32,782,482	-257,163,681	-579,255,857	-1,589,138,911		
ocial Care Savings		-8,081,596	-77,859,798	-202,565,094	-757,432,302	intervention cost plus total cost	
otal Cost Savings (NHS	+ Social Care)	-40,864,078	-335,023,479	-781,820,951	-2,346,571,214	savings.	
VERALL COST OR SA	VINGS, NET OF INTERVENTION	410,947,640	1,354,008,592	1,833,690,040	2,231,236,63	5 K	

You will notice that even if you selected to change usage of a single intervention, all interventions will show either some costs or savings apart from the user-defined intervention. This is because the model is calculating both the direct and indirect impact of your chosen scenario.

In the example above, you have chosen to improve detection and management of hypertension to 80%. The direct impact of doing this is implemented in the first year. You see an increase in diagnosis costs, but no change in the costs of NHS Health Check or annual review (this is because the increase in diagnosis is assumed to come from unspecified opportunistic diagnosis). You will also see an increase in cost of the interventions in the model that are recommended for management of hypertension by NICE. This includes antihypertensives, blood pressure self-monitoring, medicine use review (in people newly taking medication), smoking cessation (in smokers) and weight management (in those who are overweight or obese). You have chosen to improve both detection and management of hypertension, so the increased costs come both from newly diagnosed people undergoing these interventions, and an increase in managing existing people with hypertension. An increase in anticoagulant usage is also seen, as the increase in hypertension diagnosis increases the eligibility for anticoagulants in people who also have AF.

Indirect impacts on other interventions are seen from year 2 onwards. In this example, the cost of NHS Health Checks is reduced, but the cost of annual review is increased, as diagnosing more people with hypertension means that there are fewer people eligible for Health Checks, but more now eligible for annual review. Management interventions tend to show a reduction in costs if the increased health of people means that fewer people are eligible for the interventions (in this example, improving detection and management of hypertension has an indirect effect in delaying some cases of diabetes, so a reduction in diabetes treatment and education costs is seen). On the other hand, management interventions can show an increase in costs if people are surviving for longer in your chosen scenario, and so becoming eligible for these interventions (e.g. cost of statins or NHS DPP in the example above).

Cost savings are seen in the second part of the table and are shown as negative values. The balance between total costs and total savings is also seen in Figure 3, whilst the stacked line chart in Figure 4 illustrates the way in which savings are split into primary and secondary NHS savings, and social care savings over time (not shown here).

The final table in the costs section splits cost savings by disease area (see screenshot below). This includes CVD, end stage renal disease, blindness

and amputation (both complications of diabetes), bleeding adverse events and other. Other savings include those gained through reducing breast and bowel cancer, dementia, depression and osteoarthritis.

Table 6: Cost Savings by disease area (cumulative)					
	Year 1	Year 3	Year 5	Year 10	
CVD - split into:	-39,138,635	-296,074,858	-693,915,534	-2,199,810,040	
Primary Care	-4,919,834	-39,187,896	-96,877,275	-311,471,935	
Secondary Care	-26,269,028	-180,121,779	-396,948,171	-1,135,662,008	Increase from yr2
Social Care	-7,949,773	-76,765,183	-200,090,088	-752,676,096	due to
End-Stage Renal Disease	0	246,871	1,289,296	18,308,321	mortalit
Blindness	-253,561	-2,461,355	-6,760,593	-25,883,724	
Foot Ulcer and amputation	78,686	-1,408,565	-4,649,051	-25,001,702	
Bleeding adverse events	-42,267	131,265	77,497	1,008,667	
Other	-1,508,302	-35,456,836	-77,862,567	-115,192,737	
TOTAL SAVINGS	-40,864,078	-335,023,479 Increase due t anticoagulant	0	-2,346,571,214 Sum of all abov	e rows

You will note that costs are not always saved when split by disease area – certain disease areas may actually incur costs due to intervention (shown as positive values). This is particularly true of bleeding adverse events, which will increase directly in line with higher usage of anticoagulants. However, some conditions (particularly end-stage renal disease) may also be increased as a result of the intervention if people survive for longer than they would without intervention; this will in turn incur costs of treating those diseases.

Interpreting Results: Health Benefits

The last set of tables and graphs show the health benefits measured in quality adjusted life years (QALYs) and net monetary benefit (NMB) (not shown here as they are easy to interpret). NMB monetises the value of a QALY at £60,000 and combines it with the total net costs/savings to come up with a figure for total monetary benefit as follows:

Incremental NMB = (Incremental QALYs * £60,000) - Incremental Costs

Interpreting Results: Subgroup Analyses

Up to 16 graphs with subgroup results can be displayed. The interpretation of each of these will differ depending upon the chosen scenario, so only a couple of examples are given here. To enable comparison between the chosen subgroups, results in this section have been normalised so that each shows outcomes per 1,000 people in that subgroup in your locality. This differs from the total population results, which show the absolute costs and benefits that you would obtain. It is also important to note that the subgroup results refer to subgroups of the population at baseline, rather than a dynamic population that changes over time (e.g. with age).

Figure 6 (screenshot below) shows an example of the change in CVD events over time by risk condition. In this example, the hypertension group get the most benefit: this is not surprising as this is the group in which detection and management has been optimised. Other groups also benefit because some individuals will have other comorbid conditions in addition to hypertension, making them at particularly high CVD risk. Detection and management of their hypertension will reduce the CVD risk in these particularly high risk people of other groups. In some scenarios you may find that a group other than your selected group benefits most. This is particularly likely to happen if a high proportion of individuals have both conditions and/or if those with both conditions are at very high CVD risk.

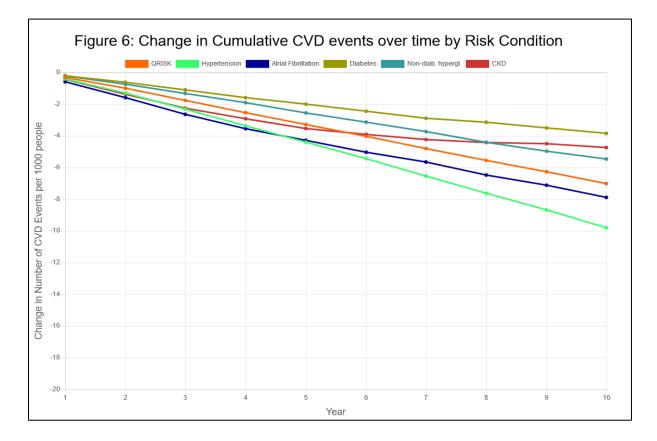
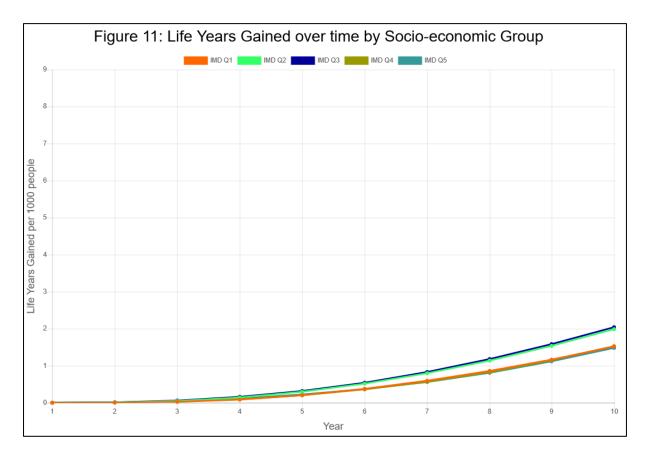



Figure 11 (screenshot below) shows an example of the change in life years over time by indices of socioeconomic deprivation (IMD) quintile, where least deprived is represented by quintile 1 (Q1) and most deprived by quintile 5 (Q5). You can see here that the outcomes for all five quintiles are very close together, and are not in order from 1-5 as might be expected. This indicates that the difference between IMD quintiles is unlikely to be significant for this outcome measure.

